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The past 10-15 years has seen a surge of interest in the use 
of functionalized organolithiums in organic synthesis.1 An 
important category of such systems includes a-heteroatom-
substituted organolithiums, especially when the heteroatom is 
oxygen or nitrogen, a- Alkoxyorganolithiums rose to prominence 
after it was demonstrated2 that they are configurationally stable 
at low temperature, making them useful intermediates in 
asymmetric synthesis.3 a-Aminoorganolithiums have also found 
an important place in asymmetric synthesis, but most examples4 

involve dipole-stabilized systems5 in which the carbanionic carbon 
is benzylic or allylic and epimerizes rapidly, even at low 
temperature.6 Recently, information about the configurational 
stability of nonconjugated, acyclic dipole-stabilized a-aminoor-
ganolithiums has been obtained which reveals configurational 
lability, except at very low temperature (Figure la and b).7'8 A 
cyclic system appears to be more configurationally stable at -78 
0C in the presence of TMEDA (Figure Ic),9 and a chelated but 
not dipole-stabilized acyclic a-aminoorganolithium showed con­
figurational stability only at -95 0C (Figure Id).10 The effect 
of TMEDA is inconsistent in the above examples, as it accelerates 
epimerization of the acyclic systems (Figure 1 a and 1 b) and retards 
epimerization of the lithio-BOC-pyrrolidine (Figure Ic). 

It has been over 20 years since Peterson introduced trans-
metalation as a means of preparing nonchelated 1 ° a-aminoor-
ganolithiums (R2NCH2LO . n To our knowledge, however, there 
are no examples of tin/lithium transmetalations to 2° a-ami-
nocarbanions that are not stabilized by chelation or a dipole or 
both. In fact, we are aware of two reports indicating the failure 
of the transmetalation approach to acyclic a-aminoorganolith-
iums.10'12 In light of this, we were somewhat surprised to find 
that JV-methyl-2-(tributylstannyl)piperidine and pyrrolidine un­
dergo rapid transmetalation in ether or THF in the presence or 
absence of TMEDA to produce 2-lithiopiperidines and 2-lithio-

(1) For numerous reviews, see: Trost, B. M.; Fleming, I., Eds. Compre­
hensive Organic Synthesis; Pergamon: Oxford, 1991; Vols. 1 and 3. 

(2) (a) Still, W. C. J. Am. Chem. Soc. 1978,100, 1481-7. (b) Still, W. 
C; Sreekumar, C. Ibid. 1980, 102, 1201-2. 

(3) For example, see: (a) Chan, P. C-M.; Chong, J. M. Tetrahedron Lett. 
1990, 31, 1985-8. (b) Chong, J. M.; Mar, E. K. Tetrahedron 1989, 24, 
7709-7716. (c) Chong, J. M.; Mar, E. K. Tetrahedron Lett. 1990,31,1981-
4. (d) Marshall, J. A.; Welmaker, G. S.; Gung, B. W. J. Am. Chem. Soc. 
1991, 113, 647-56, and references cited therein. 

(4) Reviews: (a) Gawley, R. E.; Rein, K. S. In Comprehensive Organic 
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: 1991; Vol. 3, chapter 
1.2. (b) Highsmith, T. K.; Meyers, A. I. In Advances in Heterocyclic Natural 
Product Synthesis; Pearson, W. H., Ed.; JAI: Greenwich, CT, 1991. 

(5) (a) Beak, P.; Reitz, D. B. Chem. Rev. 1978, 78, 275. (b) Beak, P.; 
Zajdel, W. J.; Reitz, D. B. Chem. Rev. 1984, 84, 471-573. 

(6) (a) Rein, K.; Goicoechea-Pappas, M.; Anklekar, T. V.; Hart, G. C; 
Smith, G. A.; Gawley, R. E. J. Am. Chem. Soc. 1989, / / / , 2211-7. (b) 
Meyers, A. I.; Guiles, J.; Warmus, J. S.; Gonzalez, M. A. Tetrahedron Lett. 
1991, 32, 5505-6. 

(7) (a) Pearson, W. H.; Lindbeck, A. C. / . Am. Chem. Soc. 1991, 113, 
8546-8. (b) Pearson, W. H.; Lindbeck, A. C; Kampf, J. W. Ibid. 1993,115, 
2622-36. 

(8) Chong, J. M.; Park, S. B. J. Org. Chem. 1992, 57, 2220-2. 
(9) Kerrick, S. T.; Beak, P. J. Am. Chem. Soc. 1991, 113, 9708-10. 
(10) Burchat, A. F.; Chong, J. M.; Park, S. B. Tetrahedron Lett. 1993,34, 

51-4. 
(11) (a) Peterson, D.J. 7. Organomet. CAem. 1970,2/,P63-4. (b)Peterson, 

D. J. J. Am. Chem. Soc. 1971, 93, 4027-31. (c) Peterson, D. J.; Ward, J. 
F. J. Organomet. Chem. 1974, 66, 209-17. 

(12) Tsunoda, T.; Fujiwara, K.; Yamamoto, Y.; ltd, S. Tetrahedron Lett. 
1991, 32, 1975-8. 

R] R2 

W H W Me <-n 
M e ^ N ^ X Et^N^-Of-Bu C^N 

(C) (d) 

Li---O Li---O Y 
Li---O 

Of-Bu 
/1-C5H 

M e , N / ^ 
1 ,.OMe 

Li 

Figure 1. (a) X = O, epimerizes in 5 min -78 0C; X = NMe, epimerizes 
in 45 min at -78 0 C (ref 7). (b) Configurationally stable at < -95 0C 
(ref 8). (c) Configurationally stable at-78 0 C in the presence of TMEDA 
(ref 9). (d) Configurationally stable at < -95 0 C (ref 10). 
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pyrrolidines, which show remarkable chemical and configurational 
stability in the presence of TMEDA. 

Synthesis of the stannanes is outlined in Scheme I. Piperi-
dinooxazoline 1'3 was alkylated to a separable mixture of stannanes 
2 in 90% yield. After separation of the diastereomeric stannanes 
2 by flash chromatography, the oxazoline was removed by 
formylation and reduction.14 Both enantiomers of the 2-(tribu-
tylstannyl)-iV-methylpiperidine were obtained in this way.15a 

Pyrrolidinylstannane 5-5 was obtained in 75% yield by DIBAL 
reduction of S-4.16 The enantiomeric excess of 5-4 is presumed 
to be 94% on the basis of the reported enantioselectivity.15b 

Scheme II outlines the transmetalation, electrophilic quench, 
and Mosher analysis17 of the piperidine and pyrrolidine systems. 
The transmetalation of 3 was complete in less than 5 min at -80 
0C, as judged by quenching with dimethyl carbonate. The 
configurational stability of 6 was evaluated in both ether and 
THF, with and without added TMEDA, at temperatures from 
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(14) Other methods for removal of the oxazoline (hydrazinolysis or LAH 
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(15) Satisfactory analytical data (1H and 13C NMR, MS, and combustion 
analysis) were obtained for compounds 2, 3, and 5. (a) (+)-3: [a]o +52.7 
(e = 0.75, chloroform); (-)-3 [a]D -55.2 (c = 0.75, chloroform); (b) S-(+)-5: 
[a]D 97.4 (c = 1.25, hexanes), presumed to be 94% ee. 

(16) No rotation was reported for S-4.» Weobtained [a]D+137 (c= 1.75, 
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Table II. Configurational and Chemical Stability of 
2-Lithiopyrrolidine (R-9) 
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Figure 2. 19FNMR of (ZJ)-Mosher esters of/V-methylpiperidine methanol 
(left, 0.5% trifluoroethanol in CDCI3) and A^-methylpyrrolidine methanol 
(right, 0.5% trifluoroacetic acid in CDCl3). Control experiments indicated 
that 0.5% of R-H would have been detected for the piperidines. 

Table I. Configurational and Chemical Stability of 
2-Lithiopiperidine 6 

solvent 

THF 
THF 
THF 
THF/TMEDA 
ether/TMEDA 
THF 
THF 
THF 
THF/TMEDA 
ether/TMEDA 
THF/TMEDA 
THF/TMEDA 
THF/TMEDA 

». (0C) 

-80 
-80 
-80 
-80 
-80 
-60 
-60 
-60 
-60 
-60 
-40 
-20 

0 

T (min) 

15 
45 
75 
45 
45 
15 
45 
75 
45 
45 
45 
15 
15 

yieldof7(%) 

71 
73 
70 
84 
83 
68 
45 
10 
74 
50 
60 
38 
0 

ee (%) 

99 
99 
99 
99 
99 
99 
95 
93 
99 
99 
99 
28 

-80 to 0 0C, for up to 75 min. Proton or fluorine NMR analysis 
of Mosher ester 8 (Figure 2) yielded the data listed in Table I. 
Lithiopiperidine 6 is both configurationally and chemically stable 
at -80 0C for at least 75 min. At -60 0C, 6 decomposes in the 
absence of TMEDA, but even under these conditions the 
remaining material retains its configuration. Addition of TME-
DA stabilizes 6 such that it is configurationally stable up to -40 
0C for at least 45 min albeit with some loss in yield. 

Similar properties were observed for SS, which was trans-
metalated to R-9 (Scheme II), quenched with carbon dioxide, 
and analyzed similarly (Figure 2).'8 The data in Table II indicate 
that R-9 is also configurationally stable up to -40 0C. Since the 
absolute configuration of the stannylpyrrolidine 5 is known to be 
S,9 obtention of R-10 indicates that transmetalation and quenching 

(18) Reaction of 9 with dimethyl carbonate was not a clean reaction. 

THF/TMEDA 
THF/TMEDA 
THF/TMEDA 
THF/TMEDA 
THF/TMEDA 
THF/TMEDA 
THF/TMEDA 

-80 
-80 
-80 
-60 
-40 
-20 

0 

15 
45 
75 
45 
45 
15 
15 

with CO2 occurred with net retention of configuration. Since 
tin-lithium exchange usually occurs with retention, it appears 
that the carboxylation of 9 also occurs with retention. 

The absolute configuration at C-2 of 2 and 3 are not known. 
By analogy with 5 (assuming that both transmetalation and 
acylation of 3 occur with retention), we can tentatively assign the 
5 configuration to the dextrorotatory enantiomer of 3 . " 

In summary, 2-lithio-./V-methylpiperidines and pyrrolidines are 
chemically and configurationally stable for up to 45 min, at 
temperatures up to -40 0C, in the presence of TMEDA. This 
is 40-55 0C higher temperature than that required to stop 
racemization of the chelated a-aminoorganolithiums studied 
previously (Figure 1, especially d). Three factors may be involved 
in the remarkable stability of 6 and 9: (i) bridging of the lithium 
across the carbon-nitrogen bond20 (probably more important in 
the absence of chelation) may significantly raise the barrier to 
inversion; (ii) chelation may actually facilitate racemization by 
"holding" the cation nearby as the carbanion inverts; or (iii) the 
added barrier of a ring flip that accompanies the inversion may 
slow the process compared to acyclic systems. To our knowledge, 
these are the first a-aminoorganolithiums lacking any stabilization 
other than that provided by the nitrogen atom to be so 
characterized. 
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